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Continuum in the Spin-Excitation Spectrum of a Haldane Chain Observed
by Neutron Scattering in CsNiCl3
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The spin-excitation continuum, expected to dominate the low-energy fluctuation spectrum in the Hal-
dane spin chain around the Brillouin zone center, q � 0, is directly observed by inelastic magnetic
neutron scattering in the S � 1 quasi-1D antiferromagnet CsNiCl3. We find that the single mode ap-
proximation fails, and that a finite energy width appears in the dynamic correlation function S �q, v�
for q & 0.5p . The width increases with decreasing q, while S �q, v� acquires an asymmetric shape
qualitatively similar to that predicted for the two-magnon continuum in the nonlinear s-model.
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A remarkable prediction by Haldane [1], that a one-
dimensional (1D) Heisenberg antiferromagnet (HAFM)
with integer spin has a gap in the spin excitation spectrum
and a finite correlation length even at T � 0, put 1D S � 1
HAFM in the focus of a continued research activity. By
now, experiments [2–5] and numerical studies [6–11]
provided a spectacular confirmation of the Haldane con-
jecture. It was established that the correlation length is
j � 6 lattice repeats, and the Haldane gap is DH � 0.41J
(J is the exchange coupling). The excitations’ spectral
weight is concentrated in a long-lived massive triplet mode
in the vicinity of the Brillouin zone (BZ) boundary q � p.
The nonlinear s model (NLsM), which gives a valid de-
scription of the 1D S � 1 HAFM in the long-wavelength
limit [11–13], and the variational treatment based on the
Jordan-Wigner fermionization of the spin operators [14],
predict that the lowest-energy excitations near q � 0 are
pairs of q � p magnons. In the absence of magnon inter-
action, the two-magnon continuum at q � 0 starts above
a gap of 2DH . Monte Carlo (MC) numerical experiments
and the exact diagonalization (ED) for rings of up to 18
spins not only support this claim [6–9], but also suggest
that continuum exists at jqj & 0.5p, almost in the half of
a Brillouin zone.

In spite of a solid theoretical evidence for existence
of the q � 0 continuum in the spectrum of a 1D S � 1
HAFM, its limits and extent remain unclear and contro-
versial. In fact, in neutron scattering studies of magnon
dispersion in the model Haldane compound NENP [3], no
appreciable deviation from the single mode approximation
(SMA) was found for q $ 0.3p. Consequently, a pic-
ture for the excitation spectrum of the 1D S � 1 HAFM,
where a single-magnon dispersion merges into a broad, but
unmeasurable, continuum at q , 0.3p, became broadly
popular [6,10]. In this paper we report a high resolution
neutron scattering study of the quasi-1D S � 1 HAFM
CsNiCl3 which corrects this picture and presents the first
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resolved measurement of the continuum part of the excita-
tion spectrum of a Haldane spin chain.

To describe a single-magnon part of the 1D excitation
spectrum in CsNiCl3 we use a lattice periodic dispersion,

´�q� �
q

D
2
H 1 y2 sin2q 1 a2 cos2 q

2 , (1)

obtained in the physically motivated semiquantitative the-
ory [14] (solid lines in Figs. 1 and 3). This simple theory
correctly captures the fermionlike nature of the q � p

magnons found in experiment [15], and provides an

FIG. 1 (color). Contour plot of the measured spectral density
of magnetic scattering, reconstructed from nine constant-q scans
via linear interpolation. Scale on the right shows variation with
energy of the wave vector transfer perpendicular to the chain at
l � 0.5, scale on the top — its variation with l at E � 3 meV.
Ellipses are the half maximum contours of the instrument reso-
lution function, calculated at E � 3 meV. Solid curve is the
single-magnon dispersion (1), dashed line shows the lowest en-
ergy of the two noninteracting magnons with given total q � pl,
and dotted line is ´�q� � y sinq.
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appealing analytical description of the excitation spectrum
in a Haldane chain, with the single-magnon dispersion
crossing the two-particle energy at q & p�2. At q * p�2
Eq. (1) is in very good agreement with MC [6]. It was
also found to coincide with the dispersion, measured in
NENP at q * 0.3p, if the parameter a is adjusted from
a � 2.5J [14] to a � 1.45J [3]. Using J � 2.275 meV,
independently determined from the high field magnetiza-
tion [16], we find that Eq. (1) gives an excellent fit to the
excitation energies in CsNiCl3. We obtain y � 2.49�4�J
and a � 1.1J, in remarkable agreement with the numeri-
cal result [11]. Most importantly, we find that spectral
density deviates from the SMA at q & 0.5p, where a
crossover to the excitation continuum occurs.

The experimental characterization of the continuum is
hindered by the rapid decrease of the static spin structure
factor S �q� �

R
S �q, v� d�h̄v� at small q. It follows

from the first moment sum rule [17], which establishes an
exact relation between S �q� and the excitation average en-
ergy �´�q�� �

R
�h̄v�S �q, v� d�h̄v��

R
S �q,v� d�h̄v�.

For the 1D S � 1 HAFM,

S �q� � 2
2
3

EGS
�1 2 cosq�

�´�q��
, (2)

where EGS � 21.40�0�J [10] is the ground state (GS) en-
ergy per site. For a gapful spectrum S �q� of Eq. (2) van-
ishes �q2 at q ! 0. Where SMA holds, S �q� is uniquely
determined by the dispersion, �´�q�� � ´�q�. Observation
of the continuum is also hindered if the excitation spec-
trum is split by the anisotropy, as in NENP and related
Ni-organic model compounds, or if the excitations acquire
a temperature-activated damping.

CsNiCl3 is one of the most isotropic and best studied
quasi-1D S � 1 HAFM compounds (see [4,5], and refer-
ences therein). It has a hexagonal crystal structure, space
group P63�mmc; at T � 1.5 K the lattice spacings are
a � 7.12 Å and c � 5.9 Å. Chains of Ni21 ions run
along the c axis and form a triangular lattice in the a-b
plane. There are two equivalent ions per c spacing, so
that Q � �h, k, l� in reciprocal lattice units corresponds to
q � pl in the 1D BZ of a chain. A very reliable estimate
for the in-chain exchange coupling, J � 2.275 meV, is ob-
tained from the measured spin-flip (saturation) field Hs �
4JgmBS � 73.5 T [16]. A spin-flop (reorientation) field
Hsf � 1.9 T implies a negligible single-ion anisotropy,
D � 0.002J.

The main disadvantage of CsNiCl3 as a model 1D HAFM
is the supercritical interchain coupling J�, which leads to
a 3D order with the propagation vector Q0 � �1�3, 1�3, 1�,
at TN � 4.8 K. The relevance of the Haldane conjecture in
this situation was the subject of a long-lasting controversy.
It was established that a gap opens in the spin-excitation
spectrum at T . TN , and in this so-called “1D phase” it
recovers the features of a Haldane chain. However, since
TN � 0.2J, the spectrum also acquires significant tem-
perature broadening [5] which hinders the identification
of a continuum. On the other hand, the spectrum also re-
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gains the 1D character at high energies, where excitations,
whose energy is sufficiently large compared to J�, are not
sensitive to it. Later on we will present quantitative argu-
ments which show that weak 3D order in CsNiCl3 causes
no significant change in the spectrum throughout the bet-
ter part of the BZ. And indeed, experiments show that the
Haldane gap triplet mode is split in the 3D ordered phase
only in the close vicinity of the magnetic Bragg peaks,
at jqj * 0.9p, where the Goldstone acoustic magnons ap-
pear [4,5]. Also, the elastic Bragg intensity, corresponding
to the ordered spin value �S� � 0.5, observed in experi-
ment [18], accounts for only �S�2�	S�S 1 1�
 � 12.5%
of the spin fluctuation spectrum. In the 1D S � 1 HAFM
this fraction of the spectral weight is concentrated in the
tiny region of the BZ, at 0.98p & jqj # p.

We measured the dependence of the energy spectrum of
the spin dynamic structure factor on the wave vector trans-
fer along the chains for a CsNiCl3 sample made of two large
crystals with total mass 6.4�1� g, at T � 1.5 K. The sample
was mounted with the �h, h, l� zone in the scattering plane,
and had effective mosaic spread &1±. Measurements were
done on SPINS 3-axis cold neutron spectrometer at NIST
Center for Neutron Research. It is equipped with an
�22 cm wide PG(002) analyzer, which allows one to in-
crease the data collection rate by opening the wave vector
acceptance. We used a position sensitive detector (PSD)
matched in size to the (flat) analyzer whose central energy
was fixed at E�0�

f � 4.2 meV and angular acceptance was
�9±. In this setup both the energy Ef and the wave vector
kf of neutrons reflected at different points across the ana-
lyzer vary, but the kf component along the analyzer scat-
tering vector tA is constant [19]. Calibration of the neutron
final energy and the sensitivity across the PSD was done
using elastic incoherent scattering from vanadium. Beam
divergence was defined by the 58Ni neutron guide and a 800

radial collimator in front of the PSD. To perform energy
scans at constant q � pl, chains were always aligned par-
allel to tA. Typical variation of the wave vector transfer
along [110] imposed by this condition is illustrated by
the right and top axes of Fig. 1. It shows the contour
plot of the raw spectral density of the scattering intensity
[�I�q, E��

R
I�q,E� dE], with the q-dependent flat back-

ground subtracted. It is evident from Fig. 1 that the spec-
trum acquires a finite width in energy at l & 0.5. Although
the effect is somewhat exaggerated by the resolution, care-
ful accounting for the latter shows that intrinsic width,
where it is nonzero, accounts for �2�3 of the total width.
Curves show the prediction of [14], obtained from (1) with
J � 2.275 meV, DH � 0.41J, y � 2.49J, and a � y.

For the quantitative analysis of the energy dependence
of the measured cross section, we use the normalized scat-
tering function of the damped harmonic oscillator (DHO),
parametrized in terms of the position v0, and the full width
at half maximum (FWHM) of the corresponding antisym-
metrized Lorentzian peak [5]. To describe the asymmetric
peak at lower q we use a “half-Lorentzian” truncated DHO
(TDHO), which gives a good analytical approximation of
017202-2
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the two-magnon line shape, predicted by the NLsM [12].
It is obtained by multiplying the S�q, v� of the DHO with a
step function u�v2 2 v

2
0�. At q . p�2, where the SMA

holds, both DHO and TDHO line shapes become d func-
tions. Our resolution correction [20] procedure is identi-
cal with that used in Ref. [3]. The resolution-convoluted
TDHO fits to several constant-q scans are shown in Fig. 2.
As quantified by x2 in Fig. 3(d), TDHO is in better agree-
ment with experiment at q & 0.5p, where a sharper onset
of the scattering at low energies, characteristic of a contin-
uum, is observed. Note that an opposite asymmetry, which
is a purely resolution effect, was reported in Ref. [3].

Peak parameters, refined for both DHO and TDHO
fits, are detailed in Fig. 3. The dispersion of the center

FIG. 2. Energy spectrum of the inelastic scattering, measured
in CsNiCl3 at several q � Qc�2 � pl. The wave vector com-
ponent in the a-b plane q� � Qa 1 Qb � ph

p
3 is defined

by the scattering geometry c k tA (Fig. 1). Solid circles show
the nonmagnetic background. Thick lines are the resolution-
corrected fits to the TDHO cross section. Shaded peaks are the
same cross section, normalized by the resolution volume, and
illustrate the “deconvoluted” intensity. Dotted lines show the
two-magnon continuum in the NLs model [12], corrected for
the nonrelativistic dispersion (1).
017202-3
of mass of the excitation spectrum, captured by the po-
sition of the DHO peak [circles in Fig. 1(a)], is nicely
described by Eq. (1). For J � 2.275 meV, the best fit,
shown in the figure, gives DH � 0.34�6�J, y � 2.49�4�J,
and a � 1.1�4�. While at q # 0.9p the spectrum is not
very sensitive to DH; the agreement of the magnon veloc-
ity y with calculations [11] is impressive. The energy inte-
grated intensity of both DHO and TDHO peaks, Fig. 3(b),
is in good agreement with the sum rule (2).

The peaks at q & 0.5p are very similar in shape and
intensity to the two-magnon continuum in the 1D NLsM
[12], which we show by the dotted lines in Fig. 2. Even
though we used the realistic magnon dispersion (1), in-
stead of the relativistic form ´�q� �

p
D

2
H 1 �yq̃�2, q̃ �

q modp, which fails for q̃ * 0.2p, the calculated contin-
uum is still too high in energy. In fact, this discrepancy
does not simply show the limitation of the s model, but

FIG. 3. Wave vector dependence of the excitation spectrum in
CsNiCl3 . Full and open circles show the parameters obtained
for the asymmetric TDHO and symmetic DHO line shapes, re-
spectively. Crosses are ED results [6]. (a) Shaded bars start at
the lower boundary of the asymmetric TDHO peak, and extend
by its FWHM. Circles show the Lorentzian peak position of the
symmetric DHO fits. Lines are the same as in Fig. 1, but with
DH � 0.34J , a � 1.1J . (b) Static structure factor. Line is the
SMA result for the dispersion shown in (a). (c) Peak intrinsic
FWHM. (d) Chi square for the TDHO and DHO fits.
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also reveals the importance of magnon interactions. In-
deed, a careful examination of Figs. 1 and 3(a) shows that
the lower boundary of the observed continuum lies below
the lowest energy of two noninteracting magnons. This
could be understood, if there is an attraction between the
quasiparticles, which form the continuum states.

To understand how our findings compare with existing
results, it is important to realize that the extent of the ob-
served continuum is rather small, as is predicted by the
NLsM. At q � 0.3p, the FWHM is �0.3J, or only
�15% of the peak energy, and requires high resolution
and low temperature, T ø 0.3J, to be detected. Previous
attempts to measure the in-chain dispersion in CsNiCl3 [4]
were, on the contrary, done with rather coarse resolution of
the thermal neutron spectrometer, and at T � 0.4J, where
temperature damping dominates the spectral width. It is
more interesting to compare our results with the neutron
scattering study in NENP [3], where no appreciable devia-
tion from the SMA was found at T & 0.01J for q $ 0.3p.
This result, however, is easily reconciled with our data, if
we note that, to observe magnetic scattering at small q, the
authors had to relax the spectrometer resolution so much
that almost a quarter of the 1D dispersion was within their
wave vector acceptance. The effect we observe is simply
unresolved in such a measurement. The splitting of the
spectrum by single-ion anisotropy, which is rather large in
NENP [15], presented another obstacle to the characteri-
zation of the continuum there.

Finally, before drawing conclusions, we evaluate quan-
titatively the effect of the interchain coupling and 3D
order on the excitation spectrum of the quasi-1D S � 1
HAFM in the mean field (MF) random phase approxima-
tion (RPA), and show that it is not important in our case.
The excitation integral intensity, given by the right-hand
side of Eq. (1), is modified in three ways. (i) The Heisen-
berg exchange energy changes on account of the static
order. At �S� & 0.5 the staggered magnetization of a Hal-
dane chain is still linear [21], and in the MF approxima-
tion the energy change is �S�2��2xp �, or less than 0.5%,
due to the large static staggered susceptibility xp � 22�J
[9]. (ii) The numerator has to be amended by adding the
interchain correlation,

P
b,t�

J�	1 2 cos�q� ? t��
 3

�Sb
RSb

R1t�
�, where q� is the wave vector component,

perpendicular to the chain. In MF this is � 1
2 	J��0� 2

J��q��
 �S�2 #
9
2 J��S�2, where J��q�� is the Fourier

transform of the interchain coupling, and can be neglected
if 9

2 J��S�2 ø 2
2
3 EGS�1 2 cosq�. (iii) The interchain

dispersion, introduced by J�, changes the magnon energy
and the denominator of Eq. (1). In RPA this is given by

´�q, q�� � ´�q�
q

1 1 xqJ��q�� � ´�q� 1 S �q�J��q��.
Here ´�q� and xq � 2S �q��´�q� are the magnon energy
and the spin susceptibility of a single chain, respectively.
From the boundaries of the interchain dispersion at q � p,
measured for CsNiCl3 in [4] at T � 10 K, and using
xp,T�0.4J � 0.74xp,T�0 [3], we find max�J��q��� 2
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min�J��q��� � 9J� � 0.3J. Plugging this value in the
above estimates, we conclude that the purely 1D expres-
sions for the magnon dispersion and the energy integrated
scattering intensity hold for CsNiCl3 within 65% at
0.3p & q & 0.7p, and within 610% at 0.2p & q & 0.8p.

Thus, our measurements present a detailed characteriza-
tion of the nonhydrodynamic part of the excitation spec-
trum in the 1D S � 1 HAFM. We find that single mode
dispersion gradually crosses over to a narrow continuum
at q & 0.5p. The continuum starts below the lowest pos-
sible energy of the two noninteracting magnons, indicating
their attraction.
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